Measure the Universe: All Units, Constants (v4.1 added volt-amp)

No formulas. Just one unit per phenomenon to be measured. Named fundamental relationships for conceptual understanding of the units. Plus constants, because they are constant like units.

Table of Contents

1: Basic Units
E1: Electromagnetism Units
E2: Electric Circuit Units
E3: Electrical Properties of Materials and Fluids, and Constants
E4: Electromagnetism, Named Laws and Equations
F1: Fluids, Properties of Materials and Fluids
F2: Fluids, Named Laws and Equations
T1: Thermodynamic Properties of Materials and Fluids, Constants
T2: Thermodynamics, Named Laws and Equations
N1: Nuclear Units

1: Basic Units

Energy, scalar, conserved in $1^{\text {st }}$ Law of Thermodynamics

E in Joules $=J=\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}=$ Watt $\cdot \mathrm{s}=$ Volts \cdot Amps \cdot seconds
Energy $=$ force \cdot distance $=$ mass \cdot velocity ${ }^{2}=$ power \cdot time $=$ potential \cdot Current \cdot time

$$
e V=1.602 \times 10^{-19} \mathrm{~J} \quad \| B T U=1055 \mathrm{~J}|\quad| \text { Calorie }=\text { kilocalorie }=\text { foodcalorie }=4184 \mathrm{~J}
$$

Joules are also used to measure total internal energy and enthalpy.

Power, scalar, also conserved because Energy must be conserved

P in Watts $=W=\frac{J}{S}=\frac{N \cdot m}{s}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{3}}=\mathrm{Volts} \cdot \mathrm{Amps}=I^{2} \cdot R=\frac{U^{2}}{R} \quad \| \quad H P=745.7 \mathrm{~W}$
Power $=\frac{\text { Energy }}{\text { time }}=$ potential \cdot current $=$ current $^{2} \cdot$ resistance $=\frac{\text { potential }^{2}}{\text { resistance }}$
Efficiency, Ratio of Useful Energy Obtained to Energy Consumed
$\eta=[$ dimensionless, usually $\%]=\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{E_{\text {in }}-E_{\text {loss }}}{E_{\text {in }}}=\frac{P_{\text {out }}-P_{\text {loss }}}{P_{\text {in }}}$
Efficiency is the only place where energy or power - in any form - can be "lost." Even if "lost" in efficiency, energy and power become heat or some other form of energy or power (yeah OK , or $\mathrm{E}=\mathrm{mc}^{2}$).

Mass, m, scalar
m in kilograms $=k g \|$ pound $_{\text {on-earth }}=l b=0.4536 \mathrm{~kg} \mid M g=$ "tonne"

Length or Distance, scalar

meter $=m \|$ inch $=0.0254 m \mid$ foot $=0.3048 m$ (both inch and foot are exact, by definition)
Area, scalar, squared length
$m^{2}=$ square meter $=$ length ${ }^{2} \|$ hectare $=10^{4} m^{2} \|$ acre $=4046.86 \mathrm{~m}^{2} \mid$
Volume, \mathbf{V}, scalar, cubed length
$m^{3}=$ cubic meter $=1000$ liters $(\sim$ thousand kg water $)$

$$
\text { gallon }=0.0037854 m^{3}=128 \text { fluid ounces }
$$

Time

seconds always for time
Force, vector, conserved in Newton's $2^{\text {nd }}$ Law
\vec{F} in Newtons $=N=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}=\mathrm{kg} \cdot \frac{\mathrm{m}}{\mathrm{s}^{2}} \quad \|$ pound $_{\text {force }}=l b f=4.448 \mathrm{~N}$
Momentum, vector, conserved in Newton's 2nd Law
$\vec{p}=m \cdot \vec{v}=k g \cdot \frac{m}{s}$

Frequency, Cycles, or Revolutions per Time or Rotational Speed

f in Hertz $=\frac{1}{s}$ for cycles and $\frac{r e v}{s}$ for rotational speed $\| \boldsymbol{\omega}=\mathbf{2 \pi} \cdot \boldsymbol{f r e q}=2 \pi \cdot \frac{\text { rev }}{s}$ radians

Angle

radian $=>\frac{2 \cdot \pi \text { radians }}{\text { full circle }} \|$ degree $=\frac{\pi}{180}$ radians
"Solid angle" = fractional portion of surface of sphere with radius of one, see Nuclear 5 slide $75 \ldots$

Torque

τ in $N \cdot m=$ Newton \cdot meter $=>[$ Joule $]$
the Energy (or Joule) relationship makes sense when considering the power of a rotating shaft:
$P_{\text {shaft }}=\tau \times \omega[$ Watts $]$
Pressure, \mathbf{p} or \mathbf{P}, scalar (vector is considered normal to the area on which it acts)
p in Pascals $=P a=\frac{N}{m^{2}}=\frac{k g}{m \cdot s^{2}}=>$ also $\frac{\mathrm{J}}{\mathrm{m}^{3}} \|$ atmosphere $=101325 \mathrm{~Pa} \| P S I=6895 \mathrm{~Pa}$ $\mathrm{mmH}_{2} \mathrm{O}=9.81 \mathrm{~Pa} \| \mathrm{mmHg}=133.3 \mathrm{~Pa}$

Temperature, T, scalar

Tin Kelvins. Water, at $\mathrm{P}_{\text {water }}=1.013 \times 10^{5} \mathrm{~Pa}$, melts at 273.15 Kelvins and boils at 373.15 Kelvins.

E1: Electromagnetism Units

Electric Potential, scalar, energy per charge
U in Volts $=V=\frac{E_{\text {potential }}}{q}=\frac{J}{C}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{3} \cdot A}=A \cdot \Omega=\frac{W}{A}=\vec{E} \cdot \mathrm{~m}$
Electric Field, vector, potential per distance, and Force, gradient of potential
$\vec{E}=\frac{\text { Volts }}{\text { meter }}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{3} \cdot \mathrm{~A}}=\frac{\text { Newtons }}{\text { Coulomb }}=\frac{\mathrm{N}}{\mathrm{C}}$
Electric Flux, vector with scalar, "electric field through a surface"
$\vec{\Phi}_{\text {electric }}=\vec{E} \cdot \vec{S}=E \cdot S \cdot \cos \theta=>$ in $V \cdot m=\frac{V}{m} \cdot m^{2}=\frac{N \cdot \mathrm{~m}^{2}}{C}=\frac{\mathrm{kg} \cdot \mathrm{m}^{3}}{\mathrm{~s}^{3} \cdot A}$
Electric Charge, scalar, energy per potential, quantized
q in Coulombs $=C=\frac{\text { Joules }}{\text { Volt }}=A \cdot s$
$e=1.602 \times 10^{-19} \mathrm{C}=$ elementary charge (proton and electron charge)
Electric Current, charge per time
I in Amps $=A=\frac{\text { Coulombs }}{S}=\frac{C}{S}$
Current Density, vector, charge per time per area
$\vec{\jmath}$ in $\frac{A m p s}{m^{2}}=>$ direction is of positive charged particles
Magnetic Field Strength, vector (AKA "Magenetic Field")
$\vec{H}=\frac{\text { Amps }}{\text { meter }}=\frac{A}{m}=\frac{\vec{B}}{\mu}$
Magnetic Flux, vector with scalar
$\vec{\Phi}_{B}=\vec{B} \cdot \vec{S}=B \cdot S \cdot \cos \theta=>$ direction is normal to the surface
Weber $=W b=\Omega \cdot C=V \cdot s=H \cdot A=T \cdot m^{2}=\frac{J}{A}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot A}$
Magentic Flux Density, vector (also AKA "Magnetic Field")
$\vec{B}=$ Tesla $=\frac{N}{m \cdot A}=\frac{k g}{s^{2} \cdot A}=\mu \cdot \vec{H}=>$ is much higher inside magnetic material
Tesla $=T=\frac{W b}{m^{2}}=\frac{V \cdot s}{m^{2}}=\frac{N}{A \cdot m}=\frac{H \cdot A}{m^{2}}=\frac{\mathrm{kg}}{C \cdot s}=\frac{N \cdot \mathrm{~s}}{C \cdot m}=\frac{\mathrm{kg}}{A \cdot \mathrm{~s}^{2}}$

E2: Electric Circuit Units

Resistance, R, scalar
Ohm $=\Omega=\mathrm{R}=\frac{\mathrm{I}}{\mathrm{U}}=\frac{\text { Amps }}{\text { Volt }}=\frac{A}{V}$
Impedance, Z, complex phasor, where \mathbf{X} is Reactance
$Z=R+j \cdot X$ where $X=X_{L}-X_{C}=X_{\text {inductive }}-X_{\text {capacitive }}$
Inductance, scalar: L is inductance, X_{L} is inductive reactance
Henry $=H=\frac{V \cdot s}{A}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot A^{2}}=\frac{\mathrm{N} \cdot \mathrm{m}}{A^{2}}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\text { Coulomb }}{ }^{2}=\frac{\mathrm{J}}{A^{2}}=\frac{\mathrm{T} \cdot \mathrm{m}^{2}}{A}=\frac{\text { Weber }}{A}=\frac{\Omega}{\mathrm{Hz}}=\Omega \cdot s=\frac{\mathrm{s}^{2}}{F}$
$v(t)=L \cdot \frac{d i}{d t}$
$Z_{\text {inductor }}=Z_{L}=j \cdot \boldsymbol{X}_{\boldsymbol{L}}=j \cdot \boldsymbol{\omega} \cdot \boldsymbol{L}=\omega \cdot L \cdot e^{j \cdot \frac{\pi}{2}}=j \cdot 2 \pi \cdot$ freq $\cdot L \quad$ and $\quad \boldsymbol{L}=\frac{\boldsymbol{X}_{\boldsymbol{L}}}{\mathbf{2 \pi} \cdot \boldsymbol{f r e q}}$
Capacitance, scalar: \mathbf{C} is capacitance, X_{C} is capacitive reactance
Farad $=F=\frac{\text { Coulombs }}{\text { Volt }}=\frac{A \cdot s}{V}=\frac{J}{V^{2}}=\frac{N \cdot m}{V^{2}}=\frac{C^{2}}{J}=\frac{s}{\Omega}=\frac{1}{\Omega \cdot H z}=\frac{s^{2}}{H}=\frac{s^{4} \cdot A^{2}}{m^{2} \cdot \mathrm{~kg}}=\frac{s^{2} \cdot C^{2}}{m^{2} \cdot \mathrm{~kg}}$
$i(t)=C \cdot \frac{d v(t)}{d t}$
$Z_{\text {capacitor }}=Z_{C}=-j \cdot \boldsymbol{X}_{\boldsymbol{C}}=-j \frac{\mathbf{1}}{\boldsymbol{\omega} \cdot \boldsymbol{C}}=\frac{1}{\omega \cdot C} \cdot e^{j \cdot\left(-\frac{\pi}{2}\right)}=-j \cdot \frac{1}{2 \pi \cdot \text { freq } \cdot C} \quad$ and $\boldsymbol{C}=\frac{\mathbf{1}}{\mathbf{2 \pi} \cdot \boldsymbol{f r e q} \cdot \boldsymbol{X}_{\boldsymbol{C}}}$
Magnetic Reluctance, opposition to magnetic flux, inverse is Magnetic Permeance
$\mathcal{R}=\frac{\mathcal{F}}{\Phi_{\mathrm{B}}}=\frac{\text { MMF }}{\text { Magnetic Flux }}=\frac{A \cdot \text { turns }}{\text { Weber }}=\frac{\text { turns }}{\text { Henry }} \| \mathrm{P}=\frac{1}{\mathcal{R}}$
Possibly add an image of IPSE book Table C. 1 here. Very useful for magnetic circuits.
Apparent Power, scalar: S is apparent power, P is real power, Q is reactive power
volt $\cdot a m p=V A=V_{R M S} \times I_{R M S}=S=\sqrt{(\text { real power })^{2}+(\text { reactive power })^{2}}=\sqrt{P^{2}+Q^{2}}$
$P=\sqrt{S^{2}-Q^{2}}=S \times$ power factor $=S \times \cos \phi=S_{D C}$

E3: Electrical Properties of Materials and Fluids, and Constants

Resistivity, Conductivity of a material
$\rho=\Omega \cdot m=R \frac{A}{l}=>R=\rho \cdot \frac{l}{A}=>$ resistivity
$\sigma=\rho^{-1}=\frac{1}{\Omega \cdot m}=\frac{l}{R \cdot A}=>R=\frac{l}{\sigma \cdot A}=>$ conductivity
Permittivity, Vacuum AKA "distributed capacitance of the vacuum"
$\epsilon_{0}=8.854 \times 10^{-12} \frac{\text { Farads }}{\text { meter }}$
Relative Permittivity and Permittivity of a Medium
$\epsilon_{\text {relative }}(\omega)=\frac{\epsilon(\omega)}{\epsilon_{0}}\left\|\epsilon(\omega)=\epsilon_{\text {relative }}(\omega) \cdot \epsilon_{0}\right\| \epsilon_{\text {relative }}$ of teflon is 2.1 [dimensionless] \|also κ
Magnetic Permeability, Vacuum ("Magnetic Permeability" = "Permeability")
$\mu_{0}=4 \cdot \pi \times 10^{-7} \frac{\text { Henry }}{\text { meter }}=1.257 \times 10^{-6} \frac{\mathrm{H}}{\mathrm{m}}=>\frac{\mathrm{H}}{\mathrm{m}}=\frac{\mathrm{N}}{\mathrm{A}^{2}}$
Relative Permeability and Permeability of a Medium
$\mu_{\text {relative }}=\frac{\mu}{\mu_{0}}\left\|\mu=\mu_{\text {relative }} \cdot \mu_{0}\right\| \mu_{\text {relative }}$ of iron is $\sim 200,000$ [dimensionless]
Planck Constant, relates photon frequency to photon energy
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \quad \| \quad E_{\text {photon }}=h \cdot f_{\text {photon }}$
Speed of Light
$c_{0}=3.0 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=\frac{1}{\sqrt{\mu_{0} \cdot \epsilon_{0}}}$

E4: Electromagnetism, Named Laws and Equations

Maxwell's equations go here.

Lorentz Force Law

$\vec{F}_{\text {electromagnetic }}=\vec{F}_{\text {electric }}+\vec{F}_{\text {magnetic }}=q \cdot(\vec{E}+\vec{v} \times \vec{B})$

Coulomb's Law

$F_{\text {Coulomb Law }}=\frac{1}{4 \cdot \pi \cdot \epsilon_{0}} \frac{q_{1} \cdot q_{2}}{r^{2}}$

F1: Fluids, Properties of Fluids and Materials

Density, mass per volume:
$\rho=\frac{k g}{m^{3}}$
Density inverse is specific volume:
$v=\rho^{-1}=\frac{m^{3}}{k g}$
Speed of Sound, c, in Ideal Gases and Air
$c=\sqrt{\frac{K_{S}}{\rho}}=\sqrt{\lambda \cdot \frac{P}{\rho}}=>\quad c_{\text {air }}=20.05 \cdot \sqrt{T} \frac{\mathrm{~m}}{\mathrm{~s}}$
Viscosity (dynamic viscosity and kinematic viscosity)
$\mu=P a \cdot s=\frac{N \cdot s}{m^{2}}=\frac{k g}{m \cdot s}=>$ dynamic viscosity $\boldsymbol{\mu}=\boldsymbol{\rho} \cdot \boldsymbol{v}$
$v=\frac{m^{2}}{s}=>$ kinematic viscosity $\boldsymbol{v}=\frac{\boldsymbol{\mu}}{\boldsymbol{\rho}} \|$ stokes $=\frac{\mathrm{cm}^{2}}{\mathrm{~s}}=0.0001 \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$
Bulk Modulous, K: Resistance to Compression of a substance.
$K=-V \cdot \frac{d P}{d V}=\rho \frac{d P}{d \rho}$
$K_{S}=\lambda \cdot P$ (isentropic) \| $K_{T}=P$ (isothermal)

F2: Fluids, Named Laws and Equations

Need Navier-Stokes etc. here

T1: Thermodynamics, Materials, Fluids, Constants

Heat Energy
Q in Joules
Heat Energy Flow
\dot{Q} in $\frac{\text { Joules }}{S}=W$ atts
Enthalpy, internal energy plus "work required to establish the system's physical dimensions"
H in Joules $=U+p \cdot V$
Internal Energy, energy contained within the system excluding kinetic and potential energy U in Joules

Heat Flux, heat flow per area
$q=\frac{\dot{Q}}{\text { Area }}$ in $\frac{\text { Watts }}{m^{2}}=>$ in this reference, always \dot{Q} in Watts or Q in Joules.No "little q."

Specific heat (often given for either constant pressure or constant volume)

c_{P} and c_{V} are both measured in $\frac{J}{\mathrm{~kg} \cdot \mathrm{~K}}$
$c_{P}=c_{V}+R_{\text {specific }}$
$\lambda=\frac{c_{P}}{c_{V}}=$ heat capacity ratio
c_{P} is always larger [almost always larger, water?] than c_{V} conceptually because "constant volume" means the pressure increases as energy is added and "helps" heat the substance. "Constant pressure" implies the gas is allowed to expand while energy is added and expanding materials cool. Thus constant pressure requires more energy per temperature to make up for the cooling that would have happened.

Thermal Conductivity, heat transfer of a material

$\kappa=\frac{\dot{Q}}{\text { Area }} \cdot \frac{\text { thickness }}{\Delta T}$ in $\frac{\text { Watts }}{m \cdot K}=\frac{\text { Watts }}{m^{2}} \cdot \frac{m}{\Delta T}=>$ sometimes λ or $k=>\dot{Q}=\kappa \cdot \frac{\text { Area } \cdot \Delta T}{\text { thickness }}$
Heat Transfer Coefficient, of a surface
$h=\frac{\dot{Q}}{A} \cdot \frac{1}{\Delta T}=\frac{\text { Watts }}{m^{2} \cdot K}=>\dot{Q}=h \cdot A \cdot \Delta T$ and $h_{\text {surface }}=\kappa_{\text {surface material }} \cdot$ thickness
Steffan-Boltzmann Constant, radiant heat of a black body
$\sigma=5.670 \times 10^{-8} \frac{W}{m^{2} \cdot K^{4}}$
can also be directly related to the Boltzmann constant, Planck constant, and c_{0} (= speed of light)

Boltzmann Constant, relates average kinetic energy of particles in a gas to thermodynamic temperature
$k_{B}=1.381 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$

Gas Constant and Specific Gas Constant

$R=R_{\text {molar }}=8.314 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}$
$R_{\text {specific }}=\frac{R}{M}$ unit is $\frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\left(\right.$ note: M usually given in $\frac{\mathrm{g}}{\mathrm{mol}}$ so must convert to $\left.\frac{\mathrm{kg}}{\mathrm{mol}}\right)$
Ideal Gas
$P V=n R T$ and $P V=m \cdot R_{\text {specific }} \cdot T$

T2: Thermodynamics, Named Laws and Equations

1. Conservation of Energy. The energy gained (or lost) by a system is equal to the energy lost (or gained) by its surroundings. Cannot produce work without energy input.
2. In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems never decreases. Heat does not spontaneously pass from a colder body to a warmer body. Cannot spontaneously convert thermal energy into mechanical work.
3. A system's entropy approaches a constant value as the temperature approaches absolute zero. With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero.
named thermodynamics equations here

N1: Nuclear Units

Nuclear

Energy

$\mathrm{MeV}=1.602 \times 10^{-13}$

Area, Tiny

barn $=10^{-28} \mathrm{~m}^{2}$

Radioactivity, various forms

becquerel $=B q=\frac{1 \text { decay }}{\text { second }}=\frac{1}{S}=>$ one 70 kg human emits 8000 Bq normally from \qquad Curie $C i=3.7 \times 10^{10} B q=37 G B q \|$ Rutherford $R d=10^{6} \mathrm{~Bq}=1 \mathrm{MBq}$
Gray $=G y=\frac{\text { Joule }}{k g}$ absorbed radiation energy $=\frac{m^{2}}{s^{2}}$
Sievert $=S v=\frac{\text { Joule }}{k g}=>$ is Gray adjusted for stochastic health risk, LNT is "linear no threshold" Normal in Belgium is $0.005 \frac{\mathrm{~Sv}}{\text { year }}$ from

Geez, how many v's are there? Volume, velocity, volts, Greek nu for viscosity. Some form of v for specific volume.

