Measure the Universe: All Units, Constants (v4.1 added volt-amp)

No formulas. Just one unit per phenomenon to be measured. Named fundamental relationships for conceptual understanding of the units. Plus constants, because they are constant like units.

Table of Contents

1: Basic Units

E1: Electromagnetism Units

E2: Electric Circuit Units

E3: Electrical Properties of Materials and Fluids, and Constants

E4: Electromagnetism, Named Laws and Equations

F1: Fluids, Properties of Materials and Fluids

F2: Fluids, Named Laws and Equations

T1: Thermodynamic Properties of Materials and Fluids, Constants

T2: Thermodynamics, Named Laws and Equations

N1: Nuclear Units

1: Basic Units

Energy, scalar, conserved in 1st Law of Thermodynamics

E in Joules =
$$J = N \cdot m = kg \cdot \frac{m^2}{s^2} = Watt \cdot s = Volts \cdot Amps \cdot seconds$$

 $Energy = force \cdot distance = mass \cdot velocity^2 = power \cdot time = potential \cdot Current \cdot time$

$$eV = 1.602 \times 10^{-19} \, J \mid \mid BTU = 1055 \, J \mid \mid Calorie = kilocalorie = foodcalorie = 4184 \, J$$

Joules are also used to measure total internal energy and enthalpy.

Power, scalar, also conserved because Energy must be conserved

$$P \text{ in Watts} = W = \frac{J}{S} = \frac{N \cdot m}{S} = \frac{kg \cdot m^2}{S^3} = Volts \cdot Amps = I^2 \cdot R = \frac{U^2}{R} \mid \mid HP = 745.7 \text{ W}$$

$$Power = \frac{Energy}{time} = potential \cdot current = current^2 \cdot resistance = \frac{potential^2}{resistance}$$

Efficiency, Ratio of Useful Energy Obtained to Energy Consumed

$$\eta = [$$
 dimensionless, usually % $] = \frac{E_{out}}{E_{in}} = \frac{P_{out}}{P_{in}} = \frac{E_{in} - E_{loss}}{E_{in}} = \frac{P_{out} - P_{loss}}{P_{in}}$

Efficiency is *the only place* where energy or power – in any form – can be "lost." Even if "lost" in efficiency, energy and power become heat or some other form of energy or power (yeah OK, or E=mc²).

Mass, m, scalar

 $m \ in \ kilograms = kg \mid\mid pound_{on-earth} = lb = 0.4536kg \mid Mg = "tonne"$

Length or Distance, scalar

 $meter = m \mid\mid inch = 0.0254m \mid foot = 0.3048m (both inch and foot are exact, by definition)$

2

Area, scalar, squared length

$$m^2 = square \ meter = length^2 \ || \ hectare = 10^4 m^2 \ || \ acre = 4046.86 m^2 ||$$

Volume, V, scalar, cubed length

 $m^3 = cubic\ meter = 1000\ liters\ (\sim thousand\ kg\ water)$

 $gallon = 0.0037854m^3 = 128 fluid ounces$

Time

seconds always for time

Force, vector, conserved in Newton's 2nd Law

$$\vec{F}$$
 in Newtons = $N = \frac{kg \cdot m}{s^2} = kg \cdot \frac{m}{s^2}$ || pound_{force} = $lbf = 4.448N$

Momentum, vector, conserved in Newton's 2nd Law

$$\vec{p} = m \cdot \vec{v} = kg \cdot \frac{m}{s}$$

Frequency, Cycles, or Revolutions per Time or Rotational Speed

$$f$$
 in $Hertz = \frac{1}{s}$ for cycles and $\frac{rev}{s}$ for rotational speed $|| \omega = 2\pi \cdot freq = 2\pi \cdot \frac{rev}{s}$ radians

Angle

$$radian = > \frac{2 \cdot \pi \ radians}{full \ circle} \ \mid\mid \ degree = \frac{\pi}{180} radians$$

"Solid angle" = fractional portion of surface of sphere with radius of one, see Nuclear 5 slide 75...

Torque

$$\tau$$
 in $N \cdot m = Newton \cdot meter => [Joule]$

the Energy (or Joule) relationship makes sense when considering the power of a rotating shaft:

$$P_{shaft} = \tau \times \omega \, [Watts]$$

Pressure, p or P, scalar (vector is considered normal to the area on which it acts)

$$p \ in \ Pascals = Pa = \frac{N}{m^2} = \frac{kg \cdot m}{s^2} = > also \ \frac{J}{m^3} \mid \mid atmosphere = 101325 \ Pa \mid \mid PSI = 6895 \ Pa$$

$$mmH_2O = 9.81 \ Pa \mid \mid mmHg = 133.3 \ Pa$$

Temperature, T, scalar

T in Kelvins. Water, at $P_{water} = 1.013 \times 10^5$ Pa, melts at 273.15 Kelvins and boils at 373.15 Kelvins.

E1: Electromagnetism Units

Electric Potential, scalar, energy per charge

$$U\ in\ Volts = V = \frac{E_{potential}}{q} = \frac{J}{C} = \frac{kg \cdot m^2}{s^3 \cdot A} = A \cdot \Omega = \frac{W}{A} = \vec{E} \cdot m$$

Electric Field, vector, potential per distance, and Force, gradient of potential

$$\vec{E} = \frac{Volts}{meter} = \frac{kg \cdot m}{s^3 \cdot A} = \frac{Newtons}{Coulomb} = \frac{N}{C}$$

Electric Flux, vector with scalar, "electric field through a surface"

$$\overrightarrow{\Phi}_{electric} = \overrightarrow{E} \cdot \overrightarrow{S} = E \cdot S \cdot \cos \theta = > in \ V \cdot m = \frac{V}{m} \cdot m^2 = \frac{N \cdot m^2}{C} = \frac{kg \cdot m^3}{s^3 \cdot A}$$

Electric Charge, scalar, energy per potential, quantized

$$q in Coulombs = C = \frac{Joules}{Volt} = A \cdot s$$

 $e = 1.602 \times 10^{-19} C = elementary charge (proton and electron charge)$

Electric Current, charge per time

I in Amps =
$$A = \frac{Coulombs}{s} = \frac{C}{s}$$

Current Density, vector, charge per time per area

$$\vec{j}$$
 in $\frac{Amps}{m^2} => direction$ is of positive charged particles

Magnetic Field Strength, vector (AKA "Magenetic Field")

$$\vec{H} = \frac{Amps}{meter} = \frac{A}{m} = \frac{\vec{B}}{u}$$

Magnetic Flux, vector with scalar

$$\overrightarrow{\Phi}_B = \overrightarrow{B} \cdot \overrightarrow{S} = B \cdot S \cdot \cos \theta => direction is normal to the surface$$

Weber =
$$Wb = \Omega \cdot C = V \cdot s = H \cdot A = T \cdot m^2 = \frac{J}{A} = \frac{kg \cdot m^2}{s^2 \cdot A}$$

Magentic Flux Density, vector (also AKA "Magnetic Field")

$$\vec{B} = Tesla = \frac{N}{m \cdot A} = \frac{kg}{s^2 \cdot A} = \mu \cdot \vec{H} = > is much higher inside magnetic material$$

4

$$Tesla = T = \frac{Wb}{m^2} = \frac{V \cdot s}{m^2} = \frac{N}{A \cdot m} = \frac{H \cdot A}{m^2} = \frac{kg}{C \cdot s} = \frac{N \cdot s}{C \cdot m} = \frac{kg}{A \cdot s^2}$$

E2: Electric Circuit Units

Resistance, R, scalar

$$Ohm = \Omega = R = \frac{I}{U} = \frac{Amps}{Volt} = \frac{A}{V}$$

Impedance, Z, complex phasor, where X is Reactance

$$Z = R + j \cdot X$$
 where $X = X_L - X_C = X_{inductive} - X_{capacitive}$

Inductance, scalar: L is inductance, X_L is inductive reactance

$$Henry = H = \frac{V \cdot s}{A} = \frac{kg \cdot m^2}{s^2 \cdot A^2} = \frac{N \cdot m}{A^2} = \frac{kg \cdot m^2}{Coulomb^2} = \frac{J}{A^2} = \frac{T \cdot m^2}{A} = \frac{Weber}{A} = \frac{\Omega}{Hz} = \Omega \cdot s = \frac{s^2}{F}$$

$$v(t) = L \cdot \frac{di}{dt}$$

$$Z_{inductor} = Z_L = j \cdot \mathbf{X_L} = j \cdot \boldsymbol{\omega} \cdot \mathbf{L} = \omega \cdot L \cdot e^{j \cdot \frac{\pi}{2}} = j \cdot 2\pi \cdot freq \cdot L \quad and \quad \mathbf{L} = \frac{\mathbf{X_L}}{2\pi \cdot freq}$$

Capacitance, scalar: C is capacitance, X_C is capacitive reactance

$$Farad = F = \frac{Coulombs}{Volt} = \frac{A \cdot s}{V} = \frac{J}{V^2} = \frac{N \cdot m}{V^2} = \frac{C^2}{J} = \frac{s}{\Omega} = \frac{1}{\Omega \cdot Hz} = \frac{s^2}{H} = \frac{s^4 \cdot A^2}{m^2 \cdot kg} = \frac{s^2 \cdot C^2}{m^2 \cdot kg$$

$$i(t) = C \cdot \frac{dv(t)}{dt}$$

$$Z_{capacitor} = Z_C = -j \cdot X_C = -j \frac{1}{\omega \cdot C} = \frac{1}{\omega \cdot C} \cdot e^{j \cdot \left(-\frac{\pi}{2}\right)} = -j \cdot \frac{1}{2\pi \cdot freq \cdot C} \quad and \quad C = \frac{1}{2\pi \cdot freq \cdot X_C}$$

Magnetic Reluctance, opposition to magnetic flux, inverse is Magnetic Permeance

$$\mathcal{R} = \frac{\mathcal{F}}{\Phi_{\mathrm{B}}} = \frac{MMF}{Magnetic\ Flux} = \frac{A \cdot turns}{Weber} = \frac{turns}{Henry} \quad || \quad \mathcal{P} = \frac{1}{\mathcal{R}}$$

Possibly add an image of **IPSE book Table C.1** here. Very useful for magnetic circuits.

Apparent Power, scalar: S is apparent power, P is real power, Q is reactive power

$$volt \cdot amp = VA = V_{RMS} \times I_{RMS} = S = \sqrt{(real\ power)^2 + (reactive\ power)^2} = \sqrt{P^2 + Q^2}$$

 $P = \sqrt{S^2 - Q^2} = S \times power\ factor = S \times \cos\phi = S_{DC}$

E3: Electrical Properties of Materials and Fluids, and Constants

Resistivity, Conductivity of a material

$$\rho = \Omega \cdot m = R \frac{A}{l} => R = \rho \cdot \frac{l}{A} => resistivity$$

$$\sigma = \rho^{-1} = \frac{1}{\Omega \cdot m} = \frac{l}{R \cdot A} = R = \frac{l}{\sigma \cdot A} = conductivity$$

Permittivity, Vacuum AKA "distributed capacitance of the vacuum"

$$\epsilon_0 = 8.854 \times 10^{-12} \frac{Farads}{meter}$$

Relative Permittivity and Permittivity of a Medium

$$\epsilon_{relative}(\omega) = \frac{\epsilon(\omega)}{\epsilon_0} \mid\mid \epsilon(\omega) = \epsilon_{relative}(\omega) \cdot \epsilon_0 \mid\mid \epsilon_{relative} \text{ of teflon is 2.1 [dimensionless]} \mid\mid also \kappa$$

Magnetic Permeability, Vacuum ("Magnetic Permeability" = "Permeability")

$$\mu_0 = 4 \cdot \pi \times 10^{-7} \frac{Henry}{meter} = 1.257 \times 10^{-6} \frac{H}{m} = > \frac{H}{m} = \frac{N}{A^2}$$

Relative Permeability and Permeability of a Medium

$$\mu_{relative} = \frac{\mu}{\mu_0} \mid\mid \mu = \mu_{relative} \cdot \mu_0 \mid\mid \mu_{relative} \text{ of iron is } \sim 200,000 \text{ [dimensionless]}$$

Planck Constant, relates photon frequency to photon energy

$$h = 6.626 \times 10^{-34} \, J \cdot s \; \mid \mid \; E_{photon} = h \cdot f_{photon}$$

Speed of Light

$$c_0 = 3.0 \times 10^8 \frac{m}{s} = \frac{1}{\sqrt{\mu_0 \cdot \epsilon_0}}$$

E4: Electromagnetism, Named Laws and Equations

Maxwell's equations go here.

Lorentz Force Law

$$\vec{F}_{electromagnetic} = \vec{F}_{electric} + \vec{F}_{magnetic} = q \cdot (\vec{E} + \vec{v} \times \vec{B})$$

Coulomb's Law

$$F_{Coulomb\ Law} = \frac{1}{4 \cdot \pi \cdot \epsilon_0} \frac{q_1 \cdot q_2}{r^2}$$

F1: Fluids, Properties of Fluids and Materials

Density, mass per volume:

$$\rho = \frac{kg}{m^3}$$

Density inverse is specific volume:

$$\nu = \rho^{-1} = \frac{m^3}{kg}$$

Speed of Sound, c, in Ideal Gases and Air

$$c = \sqrt{\frac{K_S}{\rho}} = \sqrt{\lambda \cdot \frac{P}{\rho}} = > c_{air} = 20.05 \cdot \sqrt{T} \frac{m}{s}$$

Viscosity (dynamic viscosity and kinematic viscosity)

$$\mu = Pa \cdot s = \frac{N \cdot s}{m^2} = \frac{kg}{m \cdot s} = > dynamic \ viscosity \ \mu = \rho \cdot \nu$$

$$v = \frac{m^2}{s} =$$
 kinematic viscosity $v = \frac{\mu}{\rho}$ || stokes $= \frac{cm^2}{s} = 0.0001 \frac{m^2}{s}$

Bulk Modulous, K: Resistance to Compression of a substance.

$$K = -V \cdot \frac{dP}{dV} = \rho \frac{dP}{d\rho}$$

$$K_S = \lambda \cdot P$$
 (isentropic) || $K_T = P$ (isothermal)

F2: Fluids, Named Laws and Equations

Need Navier-Stokes etc. here

T1: Thermodynamics, Materials, Fluids, Constants

Heat Energy

Q in Joules

Heat Energy Flow

$$\dot{Q}$$
 in $\frac{Joules}{s} = Watts$

Enthalpy, internal energy plus "work required to establish the system's physical dimensions"

$$H in Joules = U + p \cdot V$$

Internal Energy, energy contained within the system excluding kinetic and potential energy

U in Joules

Heat Flux, heat flow per area

$$q = \frac{\dot{Q}}{Area}$$
 in $\frac{Watts}{m^2} = >$ in this reference, always \dot{Q} in Watts or Q in Joules. No "little q ."

Specific heat (often given for either constant pressure or constant volume)

 c_P and c_V are both measured in $\frac{J}{kg \cdot K}$

$$c_P = c_V + R_{specific}$$

$$\lambda = \frac{c_P}{c_V} = heat \ capacity \ ratio$$

c_P is always larger [almost always larger, water?] than c_V conceptually because "constant volume" means the pressure increases as energy is added and "helps" heat the substance. "Constant *pressure*" implies the gas is allowed to expand while energy is added and expanding materials cool. Thus constant pressure requires more energy per temperature to make up for the cooling that *would have* happened.

Thermal Conductivity, heat transfer of a material

$$\kappa = \frac{\dot{Q}}{Area} \cdot \frac{thickness}{\Delta T} \text{ in } \frac{Watts}{m \cdot K} = \frac{Watts}{m^2} \cdot \frac{m}{\Delta T} = \text{sometimes } \lambda \text{ or } k = \lambda \dot{Q} = \kappa \cdot \frac{Area \cdot \Delta T}{thickness}$$

Heat Transfer Coefficient, of a surface

$$h = \frac{Q}{A} \cdot \frac{1}{\Delta T} = \frac{Watts}{m^2 \cdot K} =$$
 $\dot{Q} = h \cdot A \cdot \Delta T$ and $h_{surface} = \kappa_{surface \ material} \cdot thickness$

Steffan-Boltzmann Constant, radiant heat of a black body

$$\sigma = 5.670 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$$

can also be directly related to the Boltzmann constant, Planck constant, and c₀ (= speed of light)

9

Boltzmann Constant, relates average kinetic energy of particles in a gas to thermodynamic temperature

$$k_B = 1.381 \times 10^{-23} \frac{J}{K}$$

Gas Constant and Specific Gas Constant

$$R = R_{molar} = 8.314 \frac{J}{K \cdot mol}$$

$$R_{specific} = \frac{R}{M} \text{ unit is } \frac{J}{kg \cdot K} \left(\text{note: M usually given in } \frac{g}{mol} \text{ so must convert to } \frac{kg}{mol} \right)$$

Ideal Gas

$$PV = nRT$$
 and $PV = m \cdot R_{specific} \cdot T$

T2: Thermodynamics, Named Laws and Equations

- 1. **Conservation of Energy**. The energy gained (or lost) by a system is equal to the energy lost (or gained) by its surroundings. Cannot produce work without energy input.
- 2. In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems never decreases. Heat does not spontaneously pass from a colder body to a warmer body. Cannot spontaneously convert thermal energy into mechanical work.
- 3. A system's entropy approaches a constant value as the temperature approaches absolute zero. With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero.

named thermodynamics equations here

N1: Nuclear Units

Nuclear

Energy

$$MeV = 1.602 \times 10^{-13}$$

Area, Tiny

$$barn = 10^{-28}m^2$$

Radioactivity, various forms

$$becquerel = Bq = \frac{1 \ decay}{second} = \frac{1}{s} =$$
 one 70kg human emits 8000 Bq normally from

Curie
$$Ci = 3.7 \times 10^{10} Bq = 37 \ GBq \ || \ Rutherford \ Rd = 10^6 Bq = 1 \ MBq$$

$$Gray = Gy = \frac{Joule}{kg}$$
 absorbed radiation energy $= \frac{m^2}{s^2}$

$$Sievert = Sv = \frac{Joule}{kg} = > is \ Gray \ adjusted \ for \ stochastic \ health \ risk, LNT \ is "linear no threshold"$$

Normal in Belgium is
$$0.005 \frac{Sv}{year}$$
 from _____

Geez, how many v's are there? Volume, velocity, volts, Greek nu for viscosity. Some form of v for specific volume.